そんな名前の北欧料理。これはいつ食べても美味い。簡単だし。いろんなレシピがあるやもしれませんが、私のやってるのは以下。
適当なじゃがいもを薄切り。ここで水にさらさないのがポイントらしい。じゃがいものでんぷんでねっとりさせるのだ。皿に並べて(なるべく重ならないように)軽く塩コショウ。生クリームをひたひた未満にかけて、アンチョビの刻んだのをかけてオーブンで20分。必要だったらバターをちょっと置いたり、チーズをかけたりしてもよし。
もうこれ美味ーい!ありがとう、アンチョビ!生クリーム!
そんな名前の北欧料理。これはいつ食べても美味い。簡単だし。いろんなレシピがあるやもしれませんが、私のやってるのは以下。
適当なじゃがいもを薄切り。ここで水にさらさないのがポイントらしい。じゃがいものでんぷんでねっとりさせるのだ。皿に並べて(なるべく重ならないように)軽く塩コショウ。生クリームをひたひた未満にかけて、アンチョビの刻んだのをかけてオーブンで20分。必要だったらバターをちょっと置いたり、チーズをかけたりしてもよし。
もうこれ美味ーい!ありがとう、アンチョビ!生クリーム!
無理なく続けられる 年収10倍アップ勉強法 |
ビジネス書系って一つの内容を繰り返して書いてるし、内容が薄いんで全然読まないんですけども、これはどこかで勧められてたので読んでみました。んー、手法・考え自体に目新しいものはなかったかな。年収の5~10%を勉強のための投資に費やすと10年後には年収が10倍になるよ!ということですが、個人的には年収10倍がなかったとしても、勉強するということは楽しいかなあと思います。
社会人への勉強法なので、いかに時間を使うかということに話を割いていましたが、Audiobookを勧めてましたね。これは良さそうです。特に英語のAudiobookで経済書を(「金持ち父さん」とか「チーズはどこへ消えた」など)聴くというのは面白そうです。もうちょっと値段が安ければよいんだけどね(Amazonで1600円ぐらい。ダウンロードで300円ぐらい希望)。
おまけ。彼女の言う勉強への五つのコツ。
このコツは確かに普遍的な内容ですね。さて、私も勉強するか……
昔の会社は倒産してたんだけど、また新しく会社を作ったという話を聞いたので久々に昔の会社の同僚と飲んできました。私が無職なのにあなた方は取締役ですか、なんですか、この格差社会。
しかし、さすが元会社倒産の余波、6人中4人が自宅警備員という(あ、私は倒産と関係ないか)シュールな環境のなか、私は嬉々としてニコニコの話や最近流行のネトゲの話などをしましたよ。特に、私が近日ニコニコにはまっている話をしていたら、一人から「にょんたさん(仮名)、実はアフリカとか行ってないんでしょ?その追いつき方はちょっとおかしいから」といわれたよ。……うん、私もこの勢いをほかのことに使えばもっと人生とか良くなるとは思ったよ。
久々に飲んだので、帰りに電車を間違えて終電ぎりぎりになってしまった。驚いた、気づいたら反対の電車に乗ってるんだもん。
自分用メモ。こないだ作ったら美味しかったので。
1. ごぼうをささがき(面倒だったらピーラー)にして水1/2、みりん大1、酢大2、砂糖大1、塩小1/2 で下ゆで。 このお酢大2は私にはちょっと多かった気がする。
2.ごま大1、マヨネーズ大1、酢1、サラダ油大2、ごま油小1、七味で味付け。このときサラダ油はスキップした。七味強めが好みだ。
コンビニで売ってるようなごぼうサラダが食べたかったのだけど良い感じだった。にんじんも一緒にいれたよ。ちなみにこのレシピはこちらのサイトさんからだよ。
昨日に引き続きオークションの話。私は主に本を売りたいので、文房具屋に行って左記のものを買ってきた。水濡れ防止のビニールと、本がどんなサイズかよくわからんので全種類の封筒を用意してみたり。これで1128円になりました。……あれ?高くね?
そして。
早速なんですが、アマゾンのほうに受注が。うおおー、初の発送作業です!ドキドキします!
しかし振込金額を見て「……うーん?」と首をひねる結果に。それはなぜかというとアマゾンの仲介料。彼ら、手数料取りすぎ。わたくし、900円の本を自分だったら中古でいくらで買うかなーと考え、Amazonの発送料(ユーザーは中古を買うたび1冊ごとに340円が絶対かかります)を鑑みて300円としたんですね。お客さん側はトータル640円払うわけです。まぁそれぐらいならちょっと高いけどいいかな?と自分は思ったわけです。
そしたらAmazonが仲介手数料として225円取ってったの。成約金100円・売り上げの15%、あとカテゴリーごとに一定額という計算式らしいのだが、どう計算されてるのか何度計算してもよくわからん。そして結果的に私のところに415円がきたんだがこれって送料込みなんだよね。そっから送料だしたら純利益って255円でした。この手間かけてこれってする必要性があるのかと思った冬の一日。……はっ!違う違う、お金が目的じゃなくて暇つぶしと物処分したいだけだから良いのだ。がんばれ私。
とりあえず今のところの損益グラフ。とりあえずプラスにまでがんばろう……。
今日は一日オークション関係の登録をしてみたのだった。
YahooオクとAmazonマーケットプレイスにひたすらデータを打ち込んだのよ。あれは意外に面倒ですねえ、特にヤフオク。写真が必要だからねえ。とりあえずハードカバーの書籍(硬い内容系)はアマゾンへ、漫画とか軽いやつはヤフオクにしてみた。
ヤフオクは出品するのにプレミア登録がいるので月294円かかります。1点出品するのに10.5円の出品料です。それで落札時に落札価格の5.25%が取られます。あとアマゾンのほうは出品は無料ですが、取引制約時に¥100の成約料と販売価格の15%がかかります。──まぁ、どれもまだ売れたことないから確信がもてませんが。
とりあえず累積でグラフをつけはじめましたが、ただいまプレミア登録代と出品料で -312.5円です。明日封筒とか買ってくるつもりなので更にマイナスはかさむ予定です。果たしてこの手間と稼ぎは結びつくのか?!本はどう処分するのがいいんだ?!せどりにまでなれるのか!?(なれない) 待て次号!
アルファルファモザイクの猫でもわかる「ジンバブエ」の記事より。
前にジンバブエ同僚からインフレの話はよく聞いてたんだけど(何かを買おうとして店に行く。値段確認。銀行行ってお金おろす。店に戻る。もう値段が違うんだよ!ってジョーク)、なぜインフレがここまでひどくなったか知らなかったのです。白人の農場経営者を追い出したという話は聞いてたんだけど(でもこれは欧米知人から。ジンバブエ同僚は政治が悪いという言い方で白人が撤退したからという言い方はしなかった)。
元が2chスレッドなのでどこまで正しいのかはわからないけど、そうなのかと思ったのでメモっておく。なんなんでしょう、この悪循環は……。当たり前だが政治って大事だね。
ジンバブエの簡単な解説
今までずっと少数派の白人が政治の実権を握っていたが、民主的な選挙で、黒人政治家が増える
↓
とうとう初の黒人大統領が誕生
↓
何を思ったか「植民地時代に強奪された白人の土地資産を黒人へと無償かつ強制的に権限を委譲しなさい」法案を提出
↓
大半の白人が安値で土地資産を売り払って外国へ。
↓
今度は外資系企業に対して「保有株式の過半数を譲渡するように、逆らったら逮捕」法案を提出
↓
外資系企業が国外逃亡する
↓
別に国連もアメリカも、どこの国も経済制裁してないのに、経済制裁と同じ状態に陥る
↓
何もかもの物資が国内で不足するので、
「市場に出回っている物資が不足するなら、物資を持つ物は絶対に市場に売らないといけない」法案を提出
↓
物資の強制売却で、さらに物資不足が深刻化。当然需要と供給バランスが崩れて高値になる。
↓
物資が高値に成り過ぎて買えない人が続出
↓
「物資を絶対に安値で売らないといけない」法案を提出
↓
調達コストよりも遥かに安値で売らないといけなくなったので、当然のごとく利益が出ないから国内企業が次々と倒産する
↓
安定していた経済が、脅威の失業率 & ハイパーインフレ になるのを一年も経たずして達成。おめでとう。
↓
失業者があらゆる物資を強奪し、社会不安が増大、交通機関や警察機関も機能しなくなる。政治も収拾がつかず無茶苦茶に。
私はバリバリの文系でしたが一部の数学には興味があるのです。
先日、OVDayに行ったときに久々に数学教師に逢いました。彼女は大学院で数学を勉強してるエライ人です。そんな彼女とつらつら話しているときに面白い話を聞きました。
“√2 って無理数だよね。これを平面に取れる(描ける)と思う?”
それが彼女の質問でした。さて記憶を呼び起こしてみましょう。無理数とは分子・分母ともに整数である分数として表すことのできない実数を指す数だそうです。√2は1.4142135623730951が近似値らしいです。んんん、こんなに小数点以下が細かいと正確な長さを取るのは難しそうですよねえ。
しかし彼女の答えは違いました。”ピタゴラスの定理を使うと取れるんだよ”
つまりこういうことです。ピタゴラスの定理(三平方の定理)は「直角三角形の斜辺上に立つ正方形の面積は、他の2辺上に立つ正方形の面積の和に等しい」というやつです。 つまり、直角三角形の側辺をx、底辺をy、斜辺をzとすると、「x2+y2=z2」と表せるわけです。もし x=1, y=1 の直角三角形を作るとすると 斜辺のzは√2 になるのです。きっちり1センチが取れたとして、それで直角三角形を作ってその斜辺を図るとそれが√2。うおおおおお!すごい!そういうことができるのか!
そのほかにも非ユークリッドのこととか、虚数のこととか子供みたいに尋ねました。数の持つ面白さを子供たちに教えたいというのが彼女の夢ですから(彼女は数学の教育者関係です)、こんな先生が教えてくれたら私ももうちょっと数学好きになったかもなあと正直思いました。
えっと、これはとにかく数学に驚いたという話ですよ!
NHKのみんなのうたが好きでした。
赤鬼と青鬼のタンゴとか北風小僧の寒太郎とか恋するニワトリとかコンピューターおばあちゃんとか。今日たまたま動画で大貫妙子をみて、そういえば名曲があったなと。このメトロポリタンミュージアム、名曲なんだけど子供心に怖かったんですよ。
いやー、なつかしい。
だれも教えなかった料理のコツ | |
有元 葉子 筑摩書房 2007-01 売り上げランキング : 10168 おすすめ平均 |
本を読むにしても合う・合わないとか、読む時期とかあると思うんですよ。今回の本はあまりピンとこなくて、途中で読むのやめちゃった。
どうも内容が私の現状とはあってないような気がしてねえ。塩に3種類はそろえられないよ。あと載ってるメニューも普通で良いんだろうけどにんじんの丸焼きとかね、どうもピンとこなかったのね。
違う時期に読んだら、もうちょっとすんなり入ってくるのかもしれない。食べ物関係は好みがあるから難しいですね。